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Abstract

An easy to code and computationally efficient analytical–numerical method for quick prediction of the modal

characteristics of rectangular ribbed plates is presented. The approach is suitable for low-frequency free vibration analysis

of thin rectangular plates reinforced by a small number of light stiffeners. The assumed-modes method is used to formulate

the equations of motion of the plate and the rib separately. The motion of the built-up structure is then obtained by

enforcing appropriate continuity conditions between the two. The resulting sparse generalized eigenvalue problem can be

profitably solved by reliable methods to calculate only a small set of selected eigenmodes. An alternative formulation is

also proposed for the single-ribbed case which leads to a compact analytical form of the frequency equation whose solution

can be easily determined either graphically or numerically. The present method demonstrates good agreement with

published results and standard finite element analysis.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Structures consisting of thin plates stiffened by a set of beams form a class of structural elements of practical
importance in various engineering applications, such as aircrafts and ships. Since aerospace and marine
vehicles are subjected to dynamic loads, confident prediction of natural frequencies of a structural component
is essential in preventing excessive vibration levels, which may result in fatigue failure or very high noise levels.

Introducing stiffeners to plates complicates the dynamic analysis and some simplifying assumptions have to
be made in order to facilitate a solution of the problem. A huge amount of approximate analytical and
numerical methods has been proposed to study the vibration of rib-stiffened plates, hence no attempt is made
here to provide a complete review of the available procedures. Proposed approaches include the orthotropic
[1] and grillage [2] models, the Lagrange multiplier formalism [3], the Rayleigh–Ritz method [4,5], the finite
difference method [6], the finite element method [7–9], the differential quadrature method [10], and the
meshless method [11]. Nowadays, with the help of high-speed computers, numerical methods such as the finite
element method (FEM) are extensively adopted in industry due to their high accuracy and versatility.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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However, they are somewhat time-consuming for problems having simple geometry and boundary conditions
and become inefficient for parametric and optimization studies during the preliminary design process. Simpler
and faster models of catering for these problems are desirable.

The simplified formulation presented in this paper provides an approximate tool for fast prediction of the first
natural frequencies and mode shapes of rectangular thin plates orthogonally reinforced by a small number of
light eccentric stiffeners. Since narrow stiffeners are considered, they are treated as beams and the beam/plate
interface is modeled as a nonslip line connection, i.e., the continuity of displacements and rotations is assumed
between the plate and the beam. In addition, the present theory assumes pure bending deformation of the plate.
As a result of the plate bending, the stiffening beams are subject to bending and torsion deformations. For
eccentrically rib-stiffened plates, in-plane forces do come into play and the flexural and membrane action are a

priori coupled. However, the in-plane contribution may be neglected when dealing with a small number of light
stiffening beams and when the first few natural frequencies of the built-up structure are of interest [12,13]. Under
the above assumptions, the eigenvalue problem of the dynamical system is obtained and solved by a combined
analytical–numerical method similar to the approach used by Wu and Luo [14] and Cha [15]. Both the plate and
beam motion is described separately by using the well-known assumed-modes method [16]. In the present case,
the admissible functions for the plate are selected as the product of vibrating beam eigenfunctions of equivalent
boundary conditions [17,18]. The motion of the combined system is obtained by enforcing appropriate continuity
conditions between parts of the structures. It will be shown that the resulting mass and stiffness matrices are in a
sparse form. The corresponding generalized sparse eigenproblem can be solved by reliable and efficient methods,
such as Lanczos and Arnoldi-type algorithms, to obtain a small set of selected eigenpairs. Further, the sparsity of
the eigenproblem is exploited to obtain a simple expression for the frequency equation of single-ribbed plates by
using the matrix determinant lemma [19,20]. The zeros of the resulting frequency equation can be quickly
determined either graphically or numerically by using any standard root solver routine. Numerical examples are
presented to evaluate the accuracy of the proposed method. The calculated results compare well with those
obtained using a standard FEM analysis and more refined models proposed by other researchers.

2. Formulation

2.1. Problem statement

Consider a thin, flat and rectangular plate, as shown in Fig. 1, of isotropic and linearly elastic material with
modulus of elasticity E, Poisson ratio n and density r, having uniform thickness h and occupying the region of
the ðx; yÞ-plane Oðx; yÞ : 0pxpa; 0pypb. The plate is orthogonally stiffened by a set of i ¼ 1; 2; . . . ; I
prismatic beams parallel to the y-axis and a set of j ¼ 1; 2; . . . ; J prismatic beams parallel to the x-axis. Beams
made of the same material as the plate are considered. The present theory assumes decoupling between in-
plane and out-of-plane motion of the plate and only bending motion is considered. As a result of plate
bending, the beams are subject to bending and torsion deformations. The plate is modeled using classical thin
plate theory, i.e., the effects of shear deformation and rotary inertia are neglected. The stiffening beams are
modeled as Euler–Bernoulli beams and the effects of restrained warping are included. The plate and beam
motion are described separately by using the assumed-modes method. The governing equation of motion of
each substructure is forced by the coupling loads at the beam/plate interface. The arising dynamic loads at the
ith y-wise interface include a distribution of torsional line moment mi ¼ miðy; tÞ and a transverse line force
distribution f i

¼ f i
ðy; tÞ. The arising dynamic loads at the jth x-wise interface include a distribution of

torsional line moment mj ¼ mjðx; tÞ and a transverse line force distribution f j
¼ f j
ðx; tÞ.

2.2. Plate

According to the classical theory of thin plates, the equation of motion of the forced plate is given as follows [21]:

Dr4wþ rh
q2w
qt2
¼ �

XI

i¼1

ðf idxi þmid0xiÞ �
XJ

j¼1

ðf jdyj þmjd0yjÞ (1)
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Fig. 1. Geometry of a rectangular plate orthogonally stiffened.
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where w ¼ wðx; y; tÞ is the transverse displacement, D ¼ Eh3=12ð1� n2Þ is the flexural rigidity of the plate, r4 is
the biharmonic operator, dxi ¼ dðx� xiÞ, dyj ¼ dðy� yjÞ, where d is the Dirac delta function, xi denotes the
location of the ith y-wise beam and yj denotes the location of the jth x-wise beam. d0 represents the first
derivative of the Dirac delta function with respect to its argument, i.e., d0xi ¼ ðq=qxÞdðx� xiÞ and
d0yj ¼ ðq=qyÞdðy� yjÞ. Using the assumed-modes method [16] and assuming a time-harmonic vibration, the
plate deflection w can be expressed as the superposition of a finite number of mode shape functions smnðx; yÞ as
follows:

w ¼
XM
m¼1

XN

n¼1

smnðx; yÞwmne
jot (2)

where wmn is the modal amplitude of the ðm; nÞth mode of the plate and o is the circular frequency. The mode
shape functions can be arbitrarily chosen as long as they satisfy at least the essential boundary conditions.
For rectangular plates, the mode shape functions can be written as the product of two independent beam
functions [17]:

smnðx; yÞ ¼ fmðxÞcnðyÞ (3)

Following Warburton [18], the chosen form for the beam function used in the present study is

fmðxÞ ¼ Am coshðbmxÞ þ Bm cosðbmxÞ þ Cm sinhðbmxÞ þDm sinðbmxÞ, (4)

where the constants Am;Bm;Cm;Dm and bm are determined according to the specified edge boundary
conditions of the plate at x ¼ 0 and a. The values for three different kinds of boundary conditions, i.e., simply
supported–simply supported (SS), clamped–simply supported (CS), and clamped–clamped (CC), are listed in
Table 1 as well as the characteristic equation governing the mated eigenvalue problem. The beam function
cnðyÞ is defined accordingly to Eq. (4), where x and m are replaced by y and n and the constants An, Bn, Cn, Dn,
and bn are determined according to the boundary condition of the plate at the edges y ¼ 0 and b.
After substituting Eq. (2) into Eq. (1), multiplying it with the ðp; qÞth mode shape function,
spqðx; yÞ ¼ fpðxÞcqðyÞ, and integrating over the area of the plate, the solutions must satisfy the following set
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Table 1

Coefficients of beam functions fmðxÞ

BCs Characteristic equation Am Bm Cm Dm

SS sinðbaÞ ¼ 0 0 0 0 1

CS tanðbaÞ � tanhðbaÞ ¼ 0 1 �1
�
coshðbmaÞ � cosðbmaÞ

sinhðbmaÞ � sinðbmaÞ

coshðbmaÞ � cosðbmaÞ

sinhðbmaÞ � sinðbmaÞ

CC cosðbaÞ coshðbaÞ � 1 ¼ 0 1 �1
�
coshðbmaÞ � cosðbmaÞ

sinhðbmaÞ � sinðbmaÞ

coshðbmaÞ � cosðbmaÞ

sinhðbmaÞ � sinðbmaÞ
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of M �N coupled equations:

XM
m¼1

XN

n¼1

wmn

Z a

0

Z b

0

½Dðf0000m cnfpcq þ 2f00mc
00
nfpcq þ fmc

0000
n fpcqÞ � rho2fmcnfpcq�dxdy

¼ �
XI

i¼1

Z a

0

Z b

0

½f idxifpcq þmid0xifpcq�dxdy�
XJ

j¼1

Z a

0

Z b

0

½f jdyjfpcq þmjd0yjfpcq�dxdy (5)

where the prime denotes derivative of the shape function with respect to its argument, i.e., f0m ¼ qfm=qx,
c0n ¼ qcn=qy. Using the one dominant beam function for the ðm; nÞth mode (the so-called single-term solution
[17,18]), Eq. (5) can be approximated as follows:

½DðI1mI2n þ 2I3mI4n þ I6mI5nÞ � rho2I6mI2n�wmn ¼ f mn þmmn (6)

where m ¼ 1; 2; . . . ;M and n ¼ 1; 2; . . . ;N, and f mn and mmn are the modal coupling line forces and moments,
respectively, given by

f mn ¼ �
XI

i¼1

fxi

m

Z b

0

f icn dy�
XJ

j¼1

c
yj
n

Z a

0

f jfm dx (7)

mmn ¼ �
XI

i¼1

f0xi

m

Z b

0

micn dy�
XJ

j¼1

c
0yj
n

Z a

0

mjfm dx (8)

where the superscripts xi; yj denote the location where the corresponding shape function is evaluated, i.e.,
fxi

m ¼ fmðxiÞ, c
yj
n ¼ cnðyjÞ. Eq. (6) can be written in more compact notation as

ðkmn � o2mmnÞwmn ¼ f mn þmmn (9)

where kmn is the modal stiffness of the ðm; nÞth mode calculated as follows:

kmn ¼ DðI1mI2n þ 2I3mI4n þ I6mI5nÞ (10)

and mmn is the modal mass of the ðm; nÞth mode expressed as

mmn ¼ rhI6mI2n (11)

In Eqs. (6), (10), and (11), I1�6 are the following definite integrals:

I1m ¼

Z a

0

f0000m fm dx; I4n ¼

Z b

0

c00ncn dy

I2n ¼

Z b

0

c2
n dy; I5n ¼

Z b

0

c0000n cn dy

I3m ¼

Z a

0

f00mfm dx; I6m ¼

Z a

0

f2
m dx (12)
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According to the single-term solution, the approximate natural frequency of the ðm; nÞth plate mode is
given by

omn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

rh

I1mI2n þ 2I3mI4n þ I6mI5n

I6mI2n

s
(13)

Note that the adopted approach is computationally efficient since it leads to a diagonal system in the modal
amplitude unknowns (see Eq. (6)), i.e., no explicit eigenvalue problem need to be solved for the unstiffened
plate. As shown later, this diagonal structure will also be exploited to obtain a sparse eigenproblem for the
ribbed plate. At the same time, the present formulation provides quite accurate upper bound solutions
(an average error less than 0:5% in the natural frequencies), except when free edges and free corners are
involved [17]. For this reason, only plates having various combinations of simply supported and clamped
edges are considered in the following.

2.3. Stiffening beams

Forced bending and torsional motion of each y-wise stiffening beam can be written as follows [21]:

EIi q
4wi

qy4
þ rAi q

2wi

qt2
¼ f i (14)

EIi
w

q4yi

qy4
� GJi q

2yi

qy2
þ rI i

0

q2yi

qt2
¼ mi (15)

where i ¼ 1; 2; . . . ; I , wi ¼ wiðy; tÞ and yi
¼ yi
ðy; tÞ are transverse displacement and angle of twist, respectively,

EIi is the flexural rigidity, GJi refers to the Saint-Venant torsional rigidity for uniform torsion, EIi
w denotes

the warping rigidity associated with non-uniform warping, rAi is the mass per unit length, and rI i
0 is the mass

moment of inertia per unit length. In a similar manner, forced bending and torsional motion of each jth x-wise
beam can be written as follows:

EIj q
4wj

qx4
þ rAj q

2wj

qt2
¼ f j (16)

EIj
w

q4yj

qx4
� GJj q

2yj

qx2
þ rI

j
0

q2yj

qt2
¼ mj (17)

where j ¼ 1; 2; . . . ; J, wj ¼ wjðx; tÞ and yj
¼ yj
ðx; tÞ. Assuming time-harmonic motion, the solutions are sought to be

wi ¼
XN

n¼1

wi
ncnðyÞe

jot; yi
¼
XN

n¼1

yi
ncnðyÞe

jot (18a)

wj ¼
XM
m¼1

wj
mfmðxÞe

jot; yj
¼
XM
m¼1

yj
mfmðxÞe

jot (18b)

where wi
n, y

i
n, wj

m and yj
m are the unknownmodal amplitude of the corresponding mode. After substituting Eqs. (18a)

into Eqs. (14) and (15), multiplying by the qth corresponding mode, integrating over the length b of the beam and
using the orthogonality conditions, the solutions for the ith y-wise beam must satisfy the following modal equations:

ðki
Bn � o2mi

BnÞw
i
n ¼ f i

n

ðki
Tn � o2mi

TnÞy
i
n ¼ mi

n

ðn ¼ 1; 2; . . . ;NÞ (19)

where

ki
Bn ¼ EIiI5n (20)

mi
Bn ¼ rAiI2n (21)
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are the modal stiffness and modal mass of the nth bending mode, respectively, and

ki
Tn ¼ EIi

wI5n � GJiI4n (22)

mi
Tn ¼ rI i

0I2n (23)

are the modal stiffness and modal mass of the nth torsional mode, respectively. With a similar procedure, the
solutions for the jth x-wise beam must satisfy the following modal equations:

ðkj
Bm � o2mj

BmÞw
j
m ¼ f j

m

ðkj
Tm � o2mj

TmÞy
j
m ¼ mj

m

ðm ¼ 1; 2; . . . ;MÞ (24)

where

kj
Bm ¼ EIjI1m (25)

mj
Bm ¼ rAjI6m (26)

are the modal stiffness and modal mass of the mth bending mode, respectively, and

kj
Tm ¼ EIj

wI1m � GJjI3m (27)

mj
Tm ¼ rI

j
0I6m (28)

are the modal stiffness and modal mass of the mth torsional mode, respectively. The modal coupling loads in Eqs.
(19) and (24) are given by the following expressions:

f i
n ¼

Z b

0

f icn dy; mi
n ¼

Z b

0

micn dy (29a)

f j
m ¼

Z a

0

f jfm dx; mj
m ¼

Z a

0

mjfm dx (29b)

2.4. Ribbed plate

By comparing Eqs. (29a) and (29b) with Eqs. (7) and (8), one obtains the following relations between the
modal coupling loads on the plate and those on the stiffening beams:

f mn ¼ �
XI

i¼1

fxi

mf i
n �

XJ

j¼1

c
yj
n f j

m (30)

mmn ¼ �
XI

i¼1

f0xi

m mi
n �

XJ

j¼1

c
0yj
n mj

m (31)

Then, using Eqs. (19) and (24), the harmonic motion of the plate can be written as follows:

ðkmn � o2mmnÞwmn ¼ �
XI

i¼1

fxi

mðk
i
Bn � o2mi

BnÞw
i
n �

XJ

j¼1

c
yj
n ðk

j
Bm � o2mj

BmÞw
j
m

�
XI

i¼1

f0xi

m ðk
i
Tn � o2mi

TnÞy
i
n �

XJ

j¼1

c
0yj
n ðk

j
Tm � o2mj

TmÞy
j
m (32)

Continuity conditions at the interface between the plate and the beams can be expressed as

wi ¼ wðxiÞ; yi
¼ w0ðxiÞ (33a)

wj ¼ wðyjÞ; yj
¼ w0ðyjÞ (33b)
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According to the assumed solutions for the displacement of the plate and the displacement and rotation of the
stiffening beams, the continuity conditions in Eqs. (33a) and (33b) can be rewritten in terms of modal
amplitudes as follows:

wi
n ¼

XM
m¼1

fxi

mwmn; yi
n ¼

XM
m¼1

f0xi

m wmn (34a)

wj
m ¼

XN

n¼1

c
yj
n wmn; yj

m ¼
XN

n¼1

c
0yj
n wmn (34b)

By substituting Eqs. (34a) and (34b) into Eq. (32), the harmonic motion of the ribbed plate is described by the
following set of coupled equations:

ðkmn � o2mmnÞwmn þ
XI

i¼1

XM
p¼1

½fxi

mðk
i
Bn � o2mi

BnÞf
xi

p þ f0xi

m ðk
i
Tn � o2mi

TnÞf
0xi

p �wpn

þ
XJ

j¼1

XN

q¼1

½c
yj
n ðk

j
Bm � o2mj

BmÞc
yj
q þ c

0yj
n ðk

j
Tm � o2mj

TmÞc
0yj
q �wmq ¼ 0 (35)

where p and q indexes denote the coupling terms due to the presence of the stiffening beams. Eq. (35) can be
expressed in a standard matrix form as

ðK� o2MÞw ¼ 0 (36)

where the modal amplitudes are grouped into the column vector w as follows:

w ¼ ½w11;w12; . . . ;w1N ;w21; . . . ;w2N ; . . . ;wmn; . . . ;wMN �
T (37)

The mass matrix M is of the form

M1111 M1112 � � � M11pq � � � M11MN

M1211 M1212 � � �

..

. . .
.

Mmn11 � � � Mmnpq

..

. . .
.

MMN11 MMNMN

2
666666666664

3
777777777775

(38)

whose elements are given by

Mmnpq ¼ mmndmpdnq þ
XI

i¼1

½mi
Bnf

xi

mf
xi

p dnq þ mi
Tnf
0xi

m f0xi

p dnq�

þ
XJ

j¼1

½mj
Bmc

yj
n c

yj
q dmp þ mj

Tmc
0yj
n c
0yj
q dmp� (39)

where dij is the Kronecker delta function. The stiffness matrix K is of the same size and form as M. The
elements of the stiffness matrix are given by

Kmnpq ¼ kmndmpdnq þ
XI

i¼1

½ki
Bnf

xi

mf
xi

p dnq þ ki
Tnf
0xi

m f0xi

p dnq�

þ
XJ

j¼1

½kj
Bmc

yj
n c

yj
q dmp þ kj

Tmc
0yj
n c
0yj
q dmp� (40)
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Mass and stiffness matrices are real, symmetric, and positive definite. Further, as shown by Eqs. (39) and (40),
they are sparse. The resulting sparse eigenproblem can be solved numerically in an efficient way using, for
example, iterative projection methods of Arnoldi type. An algorithmic variant of the Arnoldi process called
the Implicitly Restarted Arnoldi method is freely available within the FORTRAN package ARPACK [22].
The package is designed to compute a few L eigenvalues o2

l and corresponding eigenvectors wl with user
specified features such as those of smallest magnitude. The ARPACK library is accessible in MATLAB via the
built-in eigs command. Once the lth numerical eigenvector wl is known, the lth natural mode shape of the
ribbed plate may be recovered in the usual way as

wlðx; yÞ ¼ sTwl (41)

where

s ¼ ½f1c1;f1c2; . . . ;f1cN ;f2c1; . . . ;f2cN ; . . . ;fmcn; . . . ;fMcN �
T (42)
2.5. Frequency equation for the single-ribbed plate

When the plate is stiffened by one single beam, the eigenproblem can be profitably put into an alternative
form which provides an efficient method to solve for the eigenvalues of the ribbed structure. In this way, the
frequency equation of the rib-stiffened plate may be derived in a compact form which can be easily coded and
solved by any standard root solver routine.

Without any loss of generality, consider a plate stiffened by one single y-wise beam at location x0. Eq. (35)
reduce to the following:

ðkmn � o2mmnÞwmn þ
XM
p¼1

½fx0

m ðkBn � o2mBnÞf
x0

p þ f0x0

m ðkTn � o2mTnÞf
0x0

p �wpn ¼ 0 (43)

These equations can be written concisely in matrix form as

½Kp � o2Mp þUbðKb � o2MbÞU
T
b þUtðKt � o2MtÞU

T
t �w ¼ 0 (44)

where

Ub ¼ ½U1 U2 . . . UM �
T (45)

Ut ¼ ½U
0
1 U02 . . . U0M �

T (46)

Ui and U0i are N �N diagonal matrices whose ith element is fx0

i and f0x0

i , respectively. In Eq. (44) Kp and Mp

are diagonal modal stiffness and mass matrices of the unstiffened plate whose elements are kmn and mmn,
respectively; Kb and Mb are diagonal bending modal stiffness and mass matrices of the beam whose elements
are kBn and mBn; and Kt and Mt are diagonal torsional modal stiffness and mass matrices of the beam whose
elements are kTn and mTn. The natural frequencies of the ribbed plate are obtained by setting the determinant
of the coefficient matrix of Eq. (44) equal to zero:

detðKp � o2Mp þURUTÞ ¼ 0 (47)

where U ¼ ½Ub Ut� and the 2N � 2N R matrix has the following block diagonal form:

R ¼
Rb 0

0 Rt

" #
(48)

where Rb ¼ Kb � o2Mb and Rt ¼ Kt � o2Mt. According to the matrix determinant lemma [19], Eq. (47) can
be expressed as

detðKp � o2MpÞ detðI2N þ RUTðKp � o2MpÞ
�1UÞ ¼ 0 (49)
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where I2N is the identity matrix of size 2N � 2N. Since the modal stiffness and mass matrices of the unstiffened
plate are diagonal, Eq. (49) can also be written asY

m;n

ðkmn � o2mmnÞ detZ ¼ 0 (50)

where the matrix Z ¼ I2N þ RUTðKp � o2MpÞ
�1U can be partitioned as

Z ¼
Z1 Z2

Z3 Z4

" #
(51)

The individual sub-matrices of Eq. (51) are as follows:

Z1 ¼ IN þ Rb

XM
m¼1

UT
mP
�1
m Um (52)

Z2 ¼ Rb

XM
m¼1

UT
mP
�1
m U0m (53)

Z3 ¼ Rt

XM
m¼1

U0TmP�1m Um (54)

Z4 ¼ IN þ Rt

XM
m¼1

U0TmP�1m U0m (55)

where Pm is a N �N diagonal matrix whose ith element is kmi � o2mmi. Note that all the sub-matrices
are diagonal. Then, the characteristic determinant of Eq. (50) can be reduced to a simple frequency equation
Table 2

Convergence study of frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for square SSSS and CCCC plates with one x-wise stiffening beam

at b=2

M;N Mode sequence

1 2 3 4 5 6

SSSS plate with h=b ¼ 0:01, g=b ¼ 0:01, t=h ¼ 1:5
Present 3 2.1067 5.0093 5.7207 8.0237 9.8843 11.6035

5 2.1066 5.0093 5.7145 8.0236 9.8839 11.5568

7 2.1066 5.0093 5.7127 8.0236 9.8838 11.5426

9 2.1066 5.0093 5.7120 8.0236 9.8837 11.5369

11 2.1066 5.0093 5.7117 8.0235 9.8837 11.5342

13 2.1066 5.0093 5.7115 8.0235 9.8837 11.5328

15 2.1066 5.0093 5.7114 8.0235 9.8837 11.5320

Ref. [23] 15 2.1057 5.0090 5.7049 8.0219 9.8659 11.5174

NASTRAN 2.1008 5.0095 5.6604 8.0225 9.8870 11.4064

CCCC plate with h=b ¼ 0:01, g=b ¼ 0:01, t=h ¼ 1

Present 3 3.8138 7.4771 8.0913 11.0445 13.3384 14.6862

5 3.8137 7.4771 8.0874 11.0444 13.3381 14.6629

7 3.8136 7.4771 8.0862 11.0444 13.3381 14.6553

9 3.8136 7.4771 8.0858 11.0444 13.3380 14.6524

11 3.8136 7.4771 8.0855 11.0444 13.3380 14.6506

13 3.8136 7.4771 8.0854 11.0444 13.3380 14.6498

15 3.8136 7.4771 8.0853 11.0444 13.3380 14.6492

Ref. [23] 15 3.7947 7.4276 7.9970 10.9490 13.2376 14.4261

NASTRAN 3.7897 7.4426 7.9716 10.9777 13.2866 14.3817
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of the form Y
m;n

ðkmn � o2mmnÞ
Y

n

ðz1nz4n � z2nz3nÞ ¼ 0 (56)

where

z1n ¼ 1þ ðkBn � o2mBnÞ
XM
m¼1

ðfx0

m Þ
2

kmn � o2mmn

(57)

z2n ¼ ðkBn � o2mBnÞ
XM
m¼1

fx0

m f0x0

m

kmn � o2mmn

(58)

z3n ¼ ðkTn � o2mTnÞ
XM
m¼1

fx0

m f0x0

m

kmn � o2mmn

(59)
Table 3

Convergence study of frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for square SSSS and SCSC plates with multiple stiffening beams

BC M;N Mode sequence

1 2 3 4 5 6

Stiffening set (b): one central y-wise and one central x-wise beam

SSSS Present 5 2.2028 5.7225 5.7225 8.0472 11.2245 11.7234

7 2.2027 5.7207 5.7207 8.0471 11.2147 11.7079

9 2.2027 5.7200 5.7200 8.0470 11.2107 11.7018

11 2.2027 5.7197 5.7197 8.0470 11.2087 11.6990

13 2.2027 5.7195 5.7195 8.0470 11.2077 11.6975

15 2.2027 5.7195 5.7195 8.0469 11.2071 11.6966

Ref. [23] 15 2.2017 5.7167 5.7167 8.0552 11.1909 11.6785

NASTRAN 2.1948 5.6684 5.6684 8.0495 11.1208 11.5956

SCSC Present 5 3.3869 6.3886 8.1800 9.6658 12.3220 14.9087

7 3.3866 6.3871 8.1738 9.6656 12.3098 14.9046

9 3.3865 6.3865 8.1713 9.6656 12.3053 14.8947

11 3.3864 6.3862 8.1702 9.6655 12.3024 14.8899

13 3.3864 6.3860 8.1696 9.6655 12.3012 14.8874

15 3.3864 6.3859 8.1693 9.6655 12.3001 14.8859

Ref. [23] 15 3.3776 6.3094 8.1499 9.6347 12.0673 14.7993

NASTRAN 3.3519 6.2591 8.0638 9.6389 11.9324 14.6904

Stiffening set (c): two y-wise and two x-wise beams

SSSS Present 5 2.2955 6.0273 6.0273 9.1625 12.6213 12.6216

7 2.2954 6.0246 6.0246 9.1625 12.5799 12.5802

9 2.2954 6.0244 6.0244 9.1603 12.5799 12.5801

11 2.2954 6.0239 6.0239 9.1596 12.5726 12.5729

13 2.2954 6.0237 6.0237 9.1596 12.5684 12.5687

15 2.2954 6.0236 6.0236 9.1592 12.5684 12.5686

Ref. [23] 15 2.2962 6.0185 6.0185 9.1513 12.5597 12.5599

NASTRAN 2.2852 5.9544 5.9544 9.0638 12.3405 12.3440

SCSC Present 5 3.5782 6.7428 8.6920 11.3996 12.9571 16.5930

7 3.5776 6.7413 8.6830 11.3992 12.9345 16.5002

9 3.5776 6.7410 8.6822 11.3937 12.9339 16.5001

11 3.5775 6.7404 8.6804 11.3919 12.9254 16.4835

13 3.5775 6.7402 8.6795 11.3918 12.9230 16.4742

15 3.5775 6.7402 8.6793 11.3909 12.9229 16.4742

Ref. [23] 15 3.5722 6.7223 8.6508 11.3273 12.9075 16.4203

NASTRAN 3.5354 6.6518 8.5097 11.1700 12.7049 16.1271
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z4n ¼ 1þ ðkTn � o2mTnÞ
XM
m¼1

ðf0x0

m Þ
2

kmn � o2mmn

(60)

Zeros of Eq. (56) can be determined either graphically or numerically using any standard root solver routine,
such as fzero in MATLAB. The special form of the frequency equation (56) is significant because it reveals
that, if the rib location coincides with a nodal line of any modes of the unstiffened plate, then some eigenvalues
of the ribbed plate will be identical to those of the bare plate. Eq. (56) can be further simplified. When the rib
location x0 does not coincide with a nodal line of any of the modes of the unstiffened plate, then
kmn � o2mmna0. In this case, the frequency equation reduces toY

n

ðz1nz4n � z2nz3nÞ ¼ 0 (61)

The above formulation takes into account both bending and torsion deformations of the stiffening beam.
If the torsional contribution is negligible, Eq. (50) can be written asY

m;n

ðkmn � o2mmnÞ detZ1 ¼ 0 (62)

which reduces to a simple frequency equation of the formY
m;n

ðkmn � o2mmnÞ
Y

n

z1n ¼ 0 (63)
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Fig. 2. Contours of vibration modes of a square SSSS plate with one central y-wise and one central x-wise beam. (a) First mode (2.2027);

(b) second mode (5.7195); (c) third mode (5.7195); (d) fourth mode (8.0470); (e) fifth mode (11.2077); (f) sixth mode (11.6975).
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where z1n is given by Eq. (57). Finally, when the rib location x0 does not coincide with a nodal line of any of
the modes of the unstiffened plate, Eq. (63) simplifies further to giveY

n

z1n ¼ 0 (64)

3. Numerical results and discussion

The accuracy and applicability of the formulation presented in this work is first examined by studying the
convergence of the method on square ribbed plates having various boundary conditions. In the following
analysis, we shall use the letters S for simply supported edge and C for clamped edge and the usual four-letter
designation to represent the edge conditions of the plate. For instance, an SCSC plate will have edges 1–2 and
3–4 simply supported and edges 2–3 and 4–1 clamped (see Fig. 1). The dimensionless frequency parameters,
l ¼ ðob2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, will be presented. Three different types of stiffening set are considered: (a) one central

x-wise beam, (b) one central y-wise and one central x-wise beam, and (c) two equally spaced y-wise and two
equally spaced x-wise beams. It is also assumed that all stiffeners have the same rectangular cross-section of
width g and depth t (see Fig. 1). Poisson’s ratio n ¼ 0:3 and a plate thickness ratio h=b ¼ 0:01 are used
throughout this study.

Results obtained using the method developed here are compared with the Ritz results published by Liew
et al. [23] and those obtained using a standard FEM analysis. Liew et al. solved the free vibration problem
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Fig. 3. Contours of vibration modes of a square SCSC plate with one central y-wise and one central x-wise beam. (a) First mode (3.3864);

(b) second mode (6.3860); (c) third mode (8.1696); (d) fourth mode (9.6655); (e) fifth mode (12.3012); (f) sixth mode (14.8874).
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using the Ritz method with mathematically complete algebraic polynomials with a degree set of 15. They used
Mindlin theory to model the plate and Timoshenko theory to model the stiffeners, whereas in-plane
displacements of the plate and warping stiffness of the beams were neglected in their formulation. FEM
analysis was carried out with NASTRAN using 7500 four-node isoparametric CQUAD4 flat elements to
model the plate and 50 CBEAM elements to model each stiffening beam. Both membrane and bending
behavior is included in the shell element formulation. Contribution of transverse shear deformation and cross-
section warping to torsional stiffness are included in the beam element formulation. Eccentricity of the
stiffeners is modeled through the offset modeling feature of the beam element and mass lumping is used in the
eigenvalue analysis. Comparison with results obtained by the two reference models can give information on
how the accuracy of the present method is influenced by the different assumptions of the formulation. The
accuracy of the single-term solution for the plate and the effect of shear deformation of the plate and stiffeners
can be evaluated by comparison with results published by Liew et al. The importance of in-plane
displacements can be predicted by further comparisons between the present approach and FEM analysis.

Table 2 gives the first six frequency parameters versus the number M ¼ N of mode shape functions used in
the model for single-ribbed (stiffening set (a)) SSSS and CCCC square plates with different t=h ratios and a
fixed stiffener width ratio g=b ¼ 0:01. Present results have been obtained using the frequency equation (56).
From Table 2 it can be seen that the six frequency parameters converge monotonically from above with the
increase of the number of beam functions used in the assumed solution. As expected, the present formulation
provides upper bound values for the natural frequencies. Results also show that the solution for the first
Table 4

Comparison study of frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for rectangular plates ða=b ¼ 2Þ with different boundary conditions (BC)

and stiffening set

BC t=h Mode sequence

1 2 3 4 5 6

Stiffening set (a): one central x-wise beam

SSSS 1 Present 1.2435 2.0379 3.3941 4.2512 5.0045 5.3040

Ref. [23] 1.2432 2.0372 3.3919 4.2483 5.0010 5.2989

1.5 Present 1.2457 2.1066 3.6067 4.2524 5.0093 5.7115

Ref. [23] 1.2454 2.1057 3.6041 4.2507 5.0090 5.7060

SCSC 1 Present 2.3873 2.9513 4.1096 5.9104 6.4386 7.0320

Ref. [23] 2.3852 2.9439 4.0854 5.8552 6.4276 7.0172

1.5 Present 2.3781 3.0022 4.3262 6.3773 6.4396 7.0373

Ref. [23] 2.3760 2.9938 4.2947 6.2988 6.4301 7.0263

CCCC 1 Present 2.4853 3.3073 4.7913 6.5034 6.9176 7.2426

Ref. [23] 2.4775 3.2908 4.7571 6.4730 6.8481 7.1940

1.5 Present 2.4966 3.4344 5.1352 6.5048 7.2487 7.5347

Ref. [23] 2.4897 3.4165 5.0883 6.4757 7.2035 7.4317

Stiffening set (c): two y-wise and two x-wise beams

SSSS 1 Present 1.2992 2.0845 3.4689 4.4657 5.1837 5.4341

Ref. [23] 1.2990 2.0840 3.4677 4.4627 5.1801 5.4291

1.5 Present 1.3852 2.2291 3.7852 4.7950 5.4760 6.0493

Ref.[23] 1.3855 2.2296 3.7863 4.7935 5.4764 6.0444

SCSC 1 Present 2.5411 3.0777 4.1455 6.0176 6.7364 7.2821

Ref. [23] 2.5387 3.0713 4.1283 5.9881 6.7250 7.2693

1.5 Present 2.7426 3.3015 4.4135 6.6563 7.1881 7.6484

Ref. [23] 2.7404 3.2969 4.4024 6.6374 7.1780 7.6403

CCCC 1 Present 2.6374 3.4660 4.8544 6.8068 7.0342 7.6675

Ref. [23] 2.6315 3.4474 4.8306 6.7908 7.0014 7.5801

1.5 Present 2.8552 3.8090 5.2872 7.2543 7.8368 8.2815

Ref. [23] 2.8528 3.7893 5.2683 7.2651 7.8194 8.1636
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modes is well converged with acceptable accuracy when M ¼ N ¼ 9. More terms ðM ¼ N ¼ 13Þ are needed to
provide accurate results for the higher modes.

The same conclusions can be drawn from Table 3 which gives the first six frequency parameters versus the
degree set M ¼ N for SSSS and SCSC square plates having multiple stiffeners (stiffening set (b) and (c)).
Results are presented for a stiffener width ratio g=b ¼ 0:01 and a stiffener height ratio t=h ¼ 1:5. Thus,
M ¼ N ¼ 13 is sufficient to guarantee good convergence of the method with acceptable accuracy for the
number of modes included in the present analysis.

A closer look at the results of Tables 2 and 3 indicates that the solutions generated using the present
combined analytical–numerical method are in close agreement with those obtained by Liew et al. The
difference between the upper bound values is less than 0.1% for SSSS plates and, as discussed above, it may be
attributed to the shear deformation included in the model of Ref. [23]. For plates with boundary conditions
other than simply supported, the difference is slightly higher (less than 1%) due to the added approximation of
the single-term solution. Good agreement is also observed with FEM results. Inclusion of in-plane
displacements reveals that deviations between 1% and 2% occur in most cases. Such an accuracy is generally
acceptable for many industrial applications during the preliminary design process. Isolated examples of very
small errors are the second and fourth mode in Table 2 and the fourth mode in Table 3 for the stiffening set (b).
This different behavior can be explained by looking at the mode shapes of the ribbed plate. Contour plots of
the first six mode shapes for the SSSS and SCSC plates of Table 3 are shown in Figs. 2 and 3, respectively.
Significant deformation of the stiffeners takes place in all modes, except for the fourth mode where the
stiffeners does not deform at all in both cases. Thus, inclusion of in-plane displacement has little influence on
this modes.

A comparison study on the first six frequency parameters is given in Table 4 for rectangular ribbed plates
with aspect ratio a=b ¼ 2. Two stiffening set (a) and (c) with increasing stiffener height ratio t=h and a fixed
width ratio g=b ¼ 0:01 are considered. Three boundary conditions, SSSS, SCSC, and CCCC, are studied for
Table 5

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for square and rectangular CSSS ribbed plates with g=b ¼ 0:01

a=b t=h Mode sequence

1 2 3 4 5 6

Stiffening set (a): one central x-wise beam

1 1 2.4948 5.2749 6.3520 8.7520 10.1475 12.3302

1.5 2.6357 5.2802 6.8682 8.7640 10.1378 13.1801

2 2.8514 5.2857 7.5193 8.7764 10.1529 13.9507

2 1 1.3180 2.2477 3.7531 4.3009 5.1326 5.8094

1.5 1.3304 2.3496 4.0154 4.3023 5.1377 6.2720

2 1.3544 2.5101 4.3038 4.3955 5.1429 6.5095

Stiffening set (b): one central y-wise and one central x-wise beam

1 1 2.5175 5.5707 6.3491 8.7850 10.8817 12.2481

1.5 2.7040 5.9738 6.8689 8.8564 11.6341 13.1323

2 2.9882 6.5076 7.5302 8.9756 12.3583 14.0372

2 1 1.3558 2.2515 3.7510 4.4779 5.1633 5.8086

1.5 1.4221 2.3595 4.0220 4.6582 5.2231 6.2730

2 1.5259 2.5287 4.4197 4.8104 5.3223 6.8835

Stiffening set (c): two y-wise and two x-wise beams

1 1 2.5718 5.6941 6.4912 9.2921 11.3505 12.8066

1.5 2.8357 6.3275 7.2809 10.1615 12.7396 14.4217

2 3.2237 7.2392 8.3978 11.4094 14.4897 16.4111

2 1 1.3731 2.3022 3.8459 4.5149 5.3368 5.9687

1.5 1.4685 2.4909 4.2387 4.8436 5.6537 6.6769

2 1.6156 2.7759 4.8092 5.3164 6.0811 7.3795
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each stiffening set and t=h ratio. It is shown that the frequency parameters generated from this study agree well
with the results from Ref. [23] for all cases considered. The present results are only slightly higher when
compared with those obtained by Liew et al.

It has to be noted that the method developed here is limited by the main assumptions made earlier in the
formulation where the beam/plate interface is treated as a line contact and the plate bending–membrane
coupling is neglected. Good agreement of the present results with other approaches confirms the validity of the
proposed method for a stiffener width ratio g=b ¼ 0:01 and a stiffener height ratio t=h ¼ 1 and 1.5. It is found
that when the beam width is not greater than the plate thickness the stiffener can be considered to be narrow
and the line connection assumption is valid. In addition, low height ratios t=h imply light stiffeners when
compared to the weight of the plate and, therefore, less coupling between out-of-plane and in-plane
displacements of the plate for those modes where significant deformation of the stiffeners takes place.
A poorer accuracy is expected with increasing the ratio between stiffener cross-sectional area and the cross-
sectional area of the plate between stiffeners.

The computational advantage of the approach developed here can be exploited to gather useful and rapid
information about the effects of geometry and boundary conditions on the natural frequencies of the ribbed
plate without resorting to cumbersome FEM analysis. As shown earlier, the accuracy of the method is
acceptable during the preliminary design process. As an example of the feasibility of the present formulation,
new results for CSSS, CCSS, and CCCS ribbed plates with different stiffening sets, plate aspect ratios a=b and
stiffener height ratios t=h are presented in Tables 5–7. It can be observed that the frequency parameters
decrease with increasing a=b ratio, increase with higher constraint, from simply supported to clamped, at the
four edges and increase with increasing t=h ratio.

Note that the present method can be applied to plates stiffened by beams with any symmetrical cross-
section. It can also be extended to plates with arbitrary orientation of stiffeners by considering a local
Table 6

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for square and rectangular CCSS ribbed plates with g=b ¼ 0:01

a=b t=h Mode sequence

1 2 3 4 5 6

Stiffening set (a): one central x-wise beam

1 1 2.8348 6.1836 6.5859 9.4863 11.5971 12.5301

1.5 2.9619 6.1943 7.0909 9.5777 11.5799 13.2956

2 3.1601 6.2124 7.6924 9.7545 11.5809 13.8202

2 1 1.8010 2.6136 4.0415 5.3145 6.0558 6.0569

1.5 1.8064 2.7025 4.2930 5.3124 6.0628 6.5102

2 1.8209 2.8459 4.6575 5.3106 6.0746 7.0830

Stiffening set (b): one central y-wise and one central x-wise beam

1 1 2.9076 6.5806 6.5936 9.5359 12.4026 12.5109

1.5 3.1441 7.0643 7.1406 9.7130 13.0512 13.4680

2 3.4989 7.6045 7.8683 10.0301 13.5847 14.3491

2 1 1.8694 2.6220 4.0548 5.5295 6.0581 6.0987

1.5 1.9664 2.7241 4.3356 5.7062 6.1825 6.5163

2 2.1106 2.8888 4.7475 5.8246 6.3094 7.0977

Stiffening set (c): two y-wise and two x-wise beams

1 1 2.9717 6.7397 6.7397 10.1081 12.9871 12.9880

1.5 3.2975 7.5480 7.5484 11.1287 14.5761 14.5801

2 3.7719 8.6916 8.6928 12.5553 16.5092 16.5166

2 1 1.8976 2.7000 4.1267 5.5879 6.2106 6.3128

1.5 2.0419 2.9170 4.5030 5.9820 6.6629 6.9120

2 2.2610 3.2429 5.0566 6.5309 7.0897 7.9015
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Table 7

Frequency parameters l ¼ ðob2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for square and rectangular CCCS ribbed plates with g=b ¼ 0:01

a=b t=h Mode sequence

1 2 3 4 5 6

Stiffening set (a): one central x-wise beam

1 1 3.3918 6.4597 7.7556 10.3308 11.7969 14.2321

1.5 3.6145 6.4820 8.3475 10.4670 11.8092 14.9665

2 3.9388 6.5215 8.9503 10.7407 11.8599 15.3730

2 1 1.8696 2.8348 4.4200 5.3473 6.1836 6.5859

1.5 1.8894 2.9619 4.7244 5.3460 6.1943 7.0909

2 1.9268 3.1601 5.1502 5.3456 6.2124 7.6632

Stiffening set (b): one central y-wise and one central x-wise beam

1 1 3.4532 6.9252 7.7610 10.3463 12.8516 14.1363

1.5 3.7782 7.5582 8.3589 10.4979 13.9345 15.0211

2 4.2557 8.4027 8.9724 10.7843 14.7835 16.0153

2 1 1.9491 2.8368 4.4304 5.6191 6.1869 6.5883

1.5 2.0770 2.9658 4.7637 5.8933 6.2012 7.0958

2 2.2696 3.1656 5.2360 6.1614 6.2230 7.7006

Stiffening set (c): two y-wise and two x-wise beams

1 1 3.5316 7.0523 7.9288 11.1131 13.1695 14.8191

1.5 3.9598 7.9171 8.9261 12.3814 14.7553 16.6013

2 4.5732 9.1337 10.3265 14.1481 16.6319 18.6189

2 1 1.9674 2.9391 4.5225 5.6266 6.5462 6.7657

1.5 2.1265 3.2200 4.9736 6.0255 7.0781 7.5611

2 2.3662 3.6358 5.6260 6.5726 7.8074 8.4840
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coordinate system for each stiffening beam and introducing in Eqs. (33a) and (33b) a coordinate
transformation between this local coordinate system and the global coordinate system of the plate.
4. Conclusions

An easy to code and computationally efficient analytical–numerical method for quick prediction of the
eigenpairs of rib-stiffened plates is presented. The approach results in a sparse generalized eigenvalue problem
that can be profitably solved by reliable methods to calculate only a small set of selected eigenmodes. An
alternative formulation is also proposed for the single-ribbed case. A compact form of the frequency equation
is derived whose solution can be easily determined either graphically or numerically. The extent and limits of
validity of the present method are presented by comparison with published results and standard finite element
analysis.
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